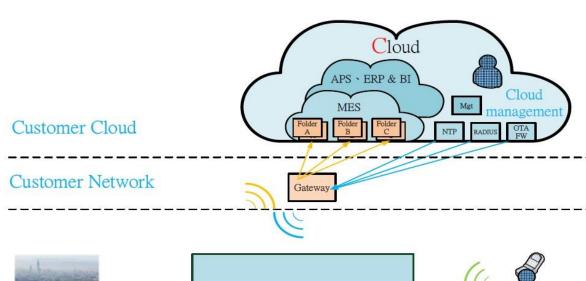
ENVM-02-U

Low power environment detection

UART digital modules (TTL)

Data sheet



Abstract

Technical data sheet describing ECM-01-U is a low-power digital gas sensor solution, which integrates a gas sensor solution for detecting low levels of gases typically found indoors or workplace, with a microcontroller unit (MCU) and an Analog-to-Digital converter to monitor the local environment and provide a standard digital interface.

System architecture

Livestock Management

Management

Management

Public Management

Classroom Management

Local Management /Setting - APP

Outdoor environment:

Air Management

Fisheries Management

Water Management

Forest Management

Garage Management

Resource Management

Indoor environment:

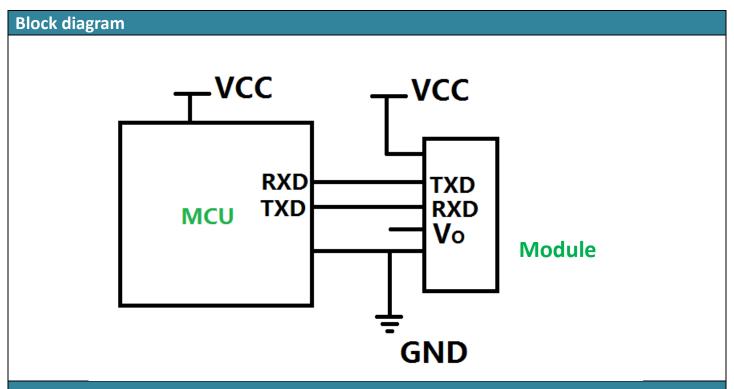
Livestock Management Agricultural Management **Public Management Classroom Management Laboratory Management**

Features

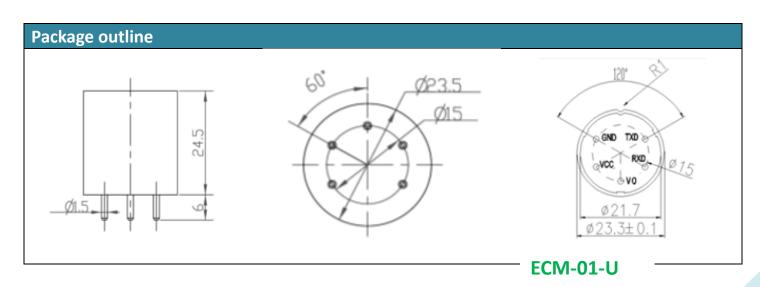
- Managing the sensor drive modes and measurements while detecting environmental gas
- Provides indication of IAQ and Industrial levels without a host intervention
- Simplifies development for faster time to market
- Extended battery life in portable applications
- Small form-factor designs
- Saves up to 60% in PCB footprint
- Designed for high volume and reliability (>2 year lifetime)

Benefits

- Integrated MCU
- On-board processing
- Standard digital interface
- Optimized low-power modes
- Standard gas calibration has been completed
- Low component count
- Proven technology platform


3.7 to 5 VDC
-5 to 50 ℃
10 to 95 %RH (no coagulation)
<=5 MIN
Electrochemical & Catalytic combustion
Diffusion
Two years (in the air)

The following different gas type sensors can be used.								
Sensor type	Gas type	Range	Resolution					
Electrochemical	O2	0 to 30 %	0.01%					
	СО	0 to 1000 ppm	0.1ppm					
	VOCs	0 to 1000 ppm	0.01ppm					
	SO ₂	0 to 20 ppm	0.1ppm					
	NO	0 to 250 ppm	0.5 ppm					
	NO ₂	0 to 20 ppm	0.1ppm					
	Оз	0 to 10 ppm	0.02ppm					
	C2H3CL	0 to100 ppm	1ppm					
	CL2	0 to 200 ppm	0.1ppm					
	H ₂ S	0 to100 ppm	0.1ppm					
	HCL	0 to 50 ppm	1ppm					
	HCN	0 to 50 ppm	1ppm					
	NH3	0 to 1000 ppm	0.5 ppm					
	PH	0 to 20 ppm	0.1ppm					
	CH₃SH	0 to 10 ppm	0.1ppm					
	ETO	0 to 500 ppm	10ppm					
Catalytic combustion	CH4	0 to 100% LEL	1 % LEL					


(Note: If you want to change the sensor, please contact customer service.)

Notes:

- 1. The electrochemical module is TTL level, please select the MCU for TTL level.
- 2. Other voltage system, please design level convert circuit.

Pin assignment								
Pin NO.	Name	Description						
1	GND	Connect to ground						
2	VCC	Supply voltage						
3	Vo	Analog voltage output (preset)						
4	RXD	UART_RXD pin is used for read data.						
5	TXD	UART_TXD pin is used for transmit data.						

UART interface

The module is configured to send the communication mode at the factory (Baud rate at 9600, 8, n, 1.), and the module will send the current concentration value once every 1S. If you want to change the communication mode, you can send the 0x78 command to change the communication mode to 0x04 (one question and answer), the module will only send the current concentration value when the 0x86 instruction (read module concentration) is received.

A. Read the sensor concentration mode. (ECM-01-U to MCU)

Active mode (0x03)									
TXD	Start	Address	Command	Sensor	data	Reservation			Check
IXD	0xFF	ID	0x86	High byte	Low byte	0x00	0x00	0x00	
	Passive mode (0x04)								
RXD	Start	Address	Command		Reservation				
KAD	0xFF	ID	0x86	0x00	0,,00	0x00	0x00	0x00	
	OXI I	טו	0,000	0,000	0x00	UXUU	UXUU	UXUU	-
TXD	Start	Address	Command	Sensor			Reservation		Check

B. Modify command of communication mode

	Start	Address	Command	Mode	Reservation			Check	
<i>RXD</i> 0xl	055	2	070	Active: 0x03	000	000	000	000	
	UXFF	0xFF ID	0x78	Passive: 0x04	0x00	0x00	0x00	0x00	
	Start	Address	Command	Return status		Resei	vation		Check
TXD	٥٧٢٢	ID.	070	Success: 0x01	000	0,,00	0,00		
	0xFF	ID	0x78	Failure: 0x00	0x00	0x00	0x00	0x00	

Notes:

- 1. In the active mode, the module will be sends data at every 1's.
- 2. In passive mode, the module receives the read command and then transfers the data to the outside MCU.

C. Modify command of Slave Address

	Start	Address	Command	Mode	Reservation				Check	
RXD	0xFF	ID	0x7C	New ID	0x00	0x00	0x00	0x00		
	Start	Address	Command	Return status	n status Reservation			Check		
TXD	0xFF New ID		Success: 0x01	0,400	0.400		000	0,00	0x00	
	UXFF	INEW ID	UX/C	Failure: 0x00	0x00	0x00	0x00	0,000		

Notes: 1. Module return code with new ID.

Assembly Environment

The following restrictions should be considered within the assembly environment.

Ambient temperature: -5°C to 50°C

Ambient humidity: 10% to 95% RH, non-condensing

Avoid exposure:

- 1. Silicone vapours from sources such as silicone adhesives, silicone rubber, silicone sealant, silicone gel, HMDS, oils including hair gels and oils.
- 2. Corrosive gases and vapours such as chlorine, hydrochloric acid, sulphur oxides for example some flux vapours.

- 3. Acids, solvents and other liquids, including water, especially where the water contains ionic contamination such as salts.
- 4. Particulates and dust.
- 5. Long term extremes, for example high humidity, high temperature and/or high concentration extremes for extended periods.
- 6. Vibration, for example ultrasonic, pneumatic tools.
- 7. Mechanical or thermal shocks.
- 8. Strong air convection environment.
- 9. Please note gluing or soldering direct to the pins of gas sensor module will void warranty, please use PCB sockets when.

WARNING: By the nature of the technology used, any electrochemical gas sensor offered by Darwei electronic can potentially fail to meet specification without warning. Although Darwei electronic Ltd makes every effort to ensure the reliability of our products of this type, where life safety is a performance requirement of the product, we recommend that all sensors and instruments using these sensors are checked for response to gas before use.

Every effort has been made to ensure the accuracy of this document at the time of printing. In accordance with the company's policy of continued product improvement Darwei electronic Limited reserves the right to make product changes without notice. No liability is accepted for any consequential losses, injury or damage resulting from the use of this document or from any omissions or errors herein. The data is given for guidance only. It does not constitute a specification or an offer for sale. The products are always subject to a program of improvement and testing which may result in some changes in the characteristics quoted. As the products may be used by the client in circumstances beyond the knowledge and control of Darwei electronic Limited, we cannot give any warranty as to the relevance of these particulars to an application. It is the clients' responsibility to carry out the necessary tests to determine the usefulness of the products and to ensure their safety of operation in a particular application. Performance characteristics on this data sheet outline the performance of newly supplied sensors. Output signal can drift below the lower limit over

